danoint

benchmark_suitable variable_bound cardinality mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
Daniel Bienstock 521 664 9.34255e-03 easy dano 65.6666666666 danoint.mps.gz

Telecommunications applications Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 521 521
Constraints 664 664
Binaries 56 56
Integers 0 0
Continuous 465 465
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00934255 0.00934255
Nonzeroes 3232 3232
Constraint Classification Properties
Original Presolved
Total 664 664
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 400 400
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 16 16
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 248 248
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.763428
Constraint % 1.05422 1.05686 1.05422 1.20482
Variable % 1.53551 1.53888 1.53551 1.72745
Score 0.593136

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 65.66667 65.66667 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.
1 65.66667 65.66667 0 0 0 - 2018-10-13 Solution imported from MIPLIB2010.

Similar instances in collection

The following instances are most similar to danoint in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
bienst2 easy 505 35 0 470 576 2184 H. Mittelmann 54.59999999999996 decomposition benchmark_suitable precedence variable_bound cardinality mixed_binary
newdano easy 505 56 0 449 576 2184 Daniel Bienstock dano 65.66666666 decomposition benchmark_suitable precedence variable_bound cardinality mixed_binary
bienst1 easy 505 28 0 477 576 2184 MIPLIB submission pool 46.7499999999999 decomposition benchmark_suitable precedence variable_bound cardinality mixed_binary
rout easy 556 300 15 241 291 2431 MIPLIB submission pool 1077.559999999999 decomposition benchmark_suitable variable_bound set_packing integer_knapsack general_linear
aflow30a easy 842 421 0 421 479 2091 T. Achterberg aflow 1158 decomposition benchmark_suitable variable_bound set_partitioning mixed_binary

Reference

@article{GunlukBienstock1995,
 author = {O. G{\"u}nl{\"u}k and D. Bienstock},
 journal = {Mathematical Programming},
 language = {English},
 pages = {213-237},
 title = {Computational experience with a difficult mixed-integer
multicommodity flow problem},
 volume = {68},
 year = {1995}
}

Last Update 2024 by Mark Turner
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint