neos-2328163-agri

binary decomposition benchmark_suitable set_partitioning set_packing set_covering cardinality invariant_knapsack binpacking knapsack

Submitter Variables Constraints Density Status Group Objective MPS File
Jeff Linderoth 2236 1963 2.90253e-03 easy neos-pseudoapplication-36 27674 neos-2328163-agri.mps.gz

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 2236 2236
Constraints 1963 1963
Binaries 2236 2236
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00290253 0.00290253
Nonzeroes 12740 12740
Constraint Classification Properties
Original Presolved
Total 1963 1963
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 104 104
Set Packing 104 104
Set Covering 52 52
Cardinality 13 13
Invariant Knapsack 78 78
Equation Knapsack 0 0
Bin Packing 0 1560
Knapsack 0 52
Integer Knapsack 0 0
Mixed Binary 1612 0
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.819544
Constraint % 0.0519751 1.25780 1.55925 1.55925
Variable % 0.1788910 1.53846 1.87835 1.87835
Score 0.802326

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 27674 27674 0 0 0 - 2018-10-15 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to neos-2328163-agri in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
peg-solitaire-a3 easy 4552 4552 0 0 4587 28387 Hiroshige Dan ; Koichi Fujii pegsolitaire 1 benchmark binary benchmark_suitable aggregations variable_bound set_partitioning cardinality binpacking
neos-4333464-siret easy 2731 1363 0 1368 2880 27710 Jeff Linderoth neos-pseudoapplication-58 24.78581995155556 benchmark_suitable variable_bound binpacking mixed_binary
neos-4343293-stony hard 9400 4698 0 4702 10650 55668 Jeff Linderoth neos-pseudoapplication-58 46.38468271624112 variable_bound binpacking mixed_binary
neos-4355351-swalm open 21065 10530 0 10535 21609 371467 Jeff Linderoth neos-pseudoapplication-58 33.45757454008309* variable_bound binpacking mixed_binary
neos-4387871-tavua hard 4004 2000 0 2004 4554 23496 Jeff Linderoth neos-pseudoapplication-58 33.384729927 benchmark benchmark_suitable variable_bound binpacking mixed_binary

Reference

No bibliographic information available

Last Update 2024 by Mark Turner
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint