bab5

binary decomposition benchmark_suitable aggregations set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack knapsack mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
Elmar Swarat 21600 4964 1.45044e-03 easy bab -106411.8401 bab5.mps.gz

Vehicle routing with profits and an integrated crew scheduling problem formulated by two coupled multi-commodity flow problems

Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 21600 21600
Constraints 4964 4946
Binaries 21600 21600
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00145044 0.00145555
Nonzeroes 155520 155502
Constraint Classification Properties
Original Presolved
Total 4964 4946
Empty 0 0
Free 0 0
Singleton 18 0
Aggregations 4 4
Precedence 0 0
Variable Bound 0 0
Set Partitioning 457 569
Set Packing 88 106
Set Covering 0 51
Cardinality 548 436
Invariant Knapsack 3443 3412
Equation Knapsack 320 320
Bin Packing 0 0
Knapsack 12 8
Integer Knapsack 0 0
Mixed Binary 74 40
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.707570
Constraint % 0.0202184 1.72988 2.10271 2.10271
Variable % 0.0185185 1.98444 1.83333 4.55556
Score 0.845261

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 -106411.8 -106411.8 0 0 0 - 2018-10-29 Solution found during MIPLIB2017 problem selection.
1 -106411.8 -106411.8 0 0 0 - 2018-10-11 Solution imported from MIPLIB2010.

Similar instances in collection

The following instances are most similar to bab5 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
bab2 hard 147912 147912 0 0 17245 2027730 Elmar Swarat bab -357544.3115 benchmark binary decomposition benchmark_suitable aggregations set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack knapsack mixed_binary
bab3 open 393800 393800 0 0 23069 3301840 Elmar Swarat bab -656009.6926* binary decomposition aggregations set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack knapsack mixed_binary
bab6 hard 114240 114240 0 0 29904 1283180 Elmar Swarat bab -284248.2307 benchmark binary benchmark_suitable aggregations precedence set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack knapsack mixed_binary
neos-3555904-turama easy 37461 37461 0 0 146493 793605 Hans Mittelmann neos-pseudoapplication-81 -34.7 benchmark binary benchmark_suitable aggregations precedence variable_bound set_partitioning set_packing cardinality invariant_knapsack
graph20-80-1rand open 16263 16263 0 0 55107 191997 Michael Bastubbe graphs -6* binary decomposition precedence set_partitioning invariant_knapsack

Reference

No bibliographic information available

Last Update Okt 02, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint