bley_xl1

binary numerics aggregations variable_bound set_partitioning set_packing cardinality invariant_knapsack binpacking knapsack mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
A. Bley 5831 175620 8.48735e-04 easy bley_x 190 bley_xl1.mps.gz

Min-cost network dimensioning problem with finite sets of link capacities and unsplittable flow routing

Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 5831 5817
Constraints 175620 175446
Binaries 5831 5817
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.000848735 0.000851232
Nonzeroes 869139 868741
Constraint Classification Properties
Original Presolved
Total 175620 175446
Empty 0 0
Free 0 0
Singleton 118 0
Aggregations 93 93
Precedence 0 0
Variable Bound 1410 1410
Set Partitioning 168 396
Set Packing 3633 3654
Set Covering 0 0
Cardinality 2027 1799
Invariant Knapsack 112607 112607
Equation Knapsack 0 0
Bin Packing 0 1677
Knapsack 78 53796
Integer Knapsack 0 0
Mixed Binary 55486 14
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.602060
Constraint % 0.019965 23.1130 27.5956 41.7234
Variable % 2.160860 33.2533 41.0564 56.5426
Score 0.344172

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 190 190 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.
1 190 190 0 0 0 - 2018-10-13 Solution imported from MIPLIB2010.

Similar instances in collection

The following instances are most similar to bley_xl1 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
circ10-3 open 2700 2700 0 0 42620 307320 M. Winkler 378* binary decomposition precedence variable_bound set_partitioning set_packing invariant_knapsack knapsack mixed_binary
bnatt500 hard 4500 4500 0 0 7029 27203 Tatsuya Akutsu bnatt Infeasible benchmark infeasible binary benchmark_suitable precedence set_covering invariant_knapsack binpacking knapsack
bnatt400 easy 3600 3600 0 0 5614 21698 Tatsuya Akutsu bnatt 1 benchmark binary benchmark_suitable precedence set_covering invariant_knapsack binpacking knapsack
neos-950242 easy 5760 5520 240 0 34224 104160 NEOS Server Submission neos-pseudoapplication-72 4 benchmark benchmark_suitable aggregations precedence variable_bound set_partitioning set_covering invariant_knapsack general_linear
supportcase10 hard 14770 14770 0 0 165684 555082 Michael Winkler 7 benchmark binary benchmark_suitable aggregations precedence variable_bound set_covering invariant_knapsack

Reference

No bibliographic information available

Last Update Aug 28, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint