bley_xs1

numerics aggregations variable_bound set_partitioning set_packing set_covering invariant_knapsack knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
A. Bley 3243 3290 2.41455e-03 open bley_x 3974033.21* bley_xs1.mps.gz

Min-cost network dimensioning problem with finite sets of link capacities and unsplittable flow routing

Imported from the MIPLIB2010 submissions.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 3243 2703
Constraints 3290 1828
Binaries 2360 2010
Integers 883 693
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00241455 0.00380362
Nonzeroes 25762 18794
Constraint Classification Properties
Original Presolved
Total 3290 1828
Empty 968 0
Free 0 0
Singleton 12 0
Aggregations 28 28
Precedence 0 0
Variable Bound 42 243
Set Partitioning 168 168
Set Packing 0 188
Set Covering 82 84
Cardinality 0 0
Invariant Knapsack 0 7
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 320 348
Integer Knapsack 0 0
Mixed Binary 422 24
General Linear 1248 738
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.593286
Constraint % 0.0547046 0.0994756 0.0547046 0.547046
Variable % 0.0737463 0.2118080 0.2212390 0.626844
Score 0.387929

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 3974033 3974033 0 0 0 - 2018-10-11 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to bley_xs1 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
bley_xs1noM open 3243 2360 883 0 3290 25762 A. Bley bley_x 3894895.53* numerics aggregations variable_bound set_partitioning set_packing set_covering invariant_knapsack knapsack mixed_binary general_linear
bley_xs2 easy 2515 1632 883 0 2257 20861 A. Bley bley_x 1051266.38 numerics aggregations variable_bound set_partitioning set_packing set_covering invariant_knapsack knapsack mixed_binary general_linear
sp98ir easy 1680 992 688 0 1531 71704 J. Goessens, S. v. Hoessel, L. Kroon sp9 219676790.4 decomposition benchmark_suitable precedence variable_bound set_covering binpacking knapsack mixed_binary general_linear
neos859080 easy 160 80 80 0 164 1280 NEOS Server Submission neos-pseudoapplication-96 Infeasible benchmark infeasible benchmark_suitable variable_bound general_linear
neos-5178119-nalagi easy 4167 4068 0 99 6921 74476 Jeff Linderoth neos-pseudoapplication-62 22.73999999763 benchmark_suitable precedence set_partitioning set_packing set_covering cardinality invariant_knapsack knapsack mixed_binary general_linear

Reference

No bibliographic information available

Last Update Jun 24, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint