blp-ic97

decomposition benchmark_suitable set_packing mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
M. Lübbecke 9845 923 1.30021e-02 easy blp 4025.0235808 blp-ic97.mps.gz

Railway line planning instance. Solved using CPLEX 12.3 (12 threads) on an Intel Xeon X5650 @ 2.67GHz, 12MB cache, 24GB RAM in 4947.5 sec. Solved using Gurobi 4.6.1 (12 threads) in 1867.9 sec.

Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 9845 8445
Constraints 923 796
Binaries 9753 8357
Integers 0 87
Continuous 92 1
Implicit Integers 0 87
Fixed Variables 4 0
Nonzero Density 0.0130021 0.0149476
Nonzeroes 118149 100481
Constraint Classification Properties
Original Presolved
Total 923 796
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 831 708
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 92 1
General Linear 0 87
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.850646
Constraint % 0.1256280 0.125628 0.125628 0.125628
Variable % 0.0473653 0.139771 0.153937 0.153937
Score 0.888204

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 4025.024 4025.024 0 0 0 - 2018-10-12 Solution imported from MIPLIB2010.
1 4025.024 4025.024 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to blp-ic97 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
blp-ir98 easy 6097 6031 0 66 486 79152 M. Lübbecke blp 2342.315488 decomposition benchmark_suitable set_packing equation_knapsack mixed_binary general_linear
blp-ic98 easy 13640 13550 0 90 717 191947 M. Lübbecke blp 4491.44758395 benchmark decomposition benchmark_suitable set_packing mixed_binary general_linear
blp-ar98 easy 16021 15806 0 215 1128 200601 M. Lübbecke blp 6205.2147104 benchmark decomposition benchmark_suitable variable_bound set_packing equation_knapsack mixed_binary general_linear
neos-4409277-trave hard 14363 14362 0 1 7875 204518 Jeff Linderoth neos-pseudoapplication-47 3 variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack mixed_binary
neos-3116779-oban easy 5141 5140 0 1 328 20561 Jeff Linderoth neos-pseudoapplication-26 0 decomposition set_packing knapsack general_linear

Reference

@article{BussieckLindnerLuebbecke2004,
 author = {M. R. Bussieck and T. Lindner and M. E. L{\"u}bbecke},
 journal = {Mathematical Methods of Operations Research},
 number = {2},
 pages = {205-220},
 title = {A Fast Algorithm for Near Optimal Line Plans},
 volume = {59},
 year = {2004}
}

@article{FischettiGloverLodi2005,
 author = {M. Fischetti and F. Glover and A. Lodi},
 journal = {Mathematical Programming},
 pages = {91--104},
 title = {The feasibility pump},
 volume = {104},
 year = {2005}
}

Last Update Apr 09, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint