dc1c

mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Double-Click SAS 10039 1649 7.31882e-03 hard 1767903.6501 dc1c.mps.gz

Crew scheduling instance. This problem was solved on ISM supercomputer Fujitsu PRIMERGY RX200S5 (http://www.ism.ac.jp/computer_system/eng/sc/index.html) by ParaSCIP in approximately 1100 hours with 14 times restarted 15 jobs.

Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 10039 10023
Constraints 1649 1646
Binaries 8380 8378
Integers 0 1636
Continuous 1659 9
Implicit Integers 0 1636
Fixed Variables 0 0
Nonzero Density 0.00731882 0.00733101
Nonzeroes 121158 120946
Constraint Classification Properties
Original Presolved
Total 1649 1646
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 2 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 1647 9
General Linear 0 1637
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.301030
Constraint % 0.54678 0.54678 0.54678 0.54678
Variable % 83.66080 83.66080 83.66080 83.66080
Score 0.000893

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 1769762 1769762 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to dc1c in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
biella1 easy 7328 6110 0 1218 1203 71489 Double-Click SAS 3065005.78 benchmark_suitable mixed_binary general_linear
trento1 easy 7687 6415 0 1272 1265 93571 MIPLIB submission pool 5189487 benchmark benchmark_suitable mixed_binary general_linear
nsr8k open 38356 32040 0 6316 6284 371608 MIPLIB submission pool 18507854.9999999* mixed_binary general_linear
dolom1 hard 11612 9720 0 1892 1803 190413 Double-Click SAS 6609253 mixed_binary general_linear
siena1 open 13741 11775 0 1966 2220 258915 Double-Click SAS 10584965.7* numerics set_covering mixed_binary general_linear

Reference

@article{FischettiGloverLodi2005,
 author = {M. Fischetti and F. Glover and A. Lodi},
 journal = {Mathematical Programming},
 pages = {91--104},
 title = {The feasibility pump},
 volume = {104},
 year = {2005}
}

@article{FischettiLodi2003,
 author = {Fischetti, Matteo and Lodi, Andrea},
 issn = {0025-5610},
 issue = {1},
 journal = {Mathematical Programming},
 keyword = {Mathematics and Statistics},
 pages = {23-47},
 publisher = {Springer},
 title = {Local branching},
 volume = {98},
 year = {2003}
}

Last Update Apr 09, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint