Submitter Variables Constraints Density Status Group Objective MPS File
Simon Felix 2450 167 1.80178e-02 open fhnw-sq NA fhnw-sq3.mps.gz

Combinatorial toy fesability problem: Magic square. Instances 1 & 2 are feasible, instance 3 is unknown.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 2450 2450
Constraints 167 167
Binaries 2401 2401
Integers 49 49
Continuous 0 0
Implicit Integers 0 49
Fixed Variables 0 0
Nonzero Density 0.0180178 0.0180178
Nonzeroes 7372 7372
Constraint Classification Properties
Original Presolved
Total 183 183
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 4 4
Variable Bound 0 0
Set Partitioning 98 98
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 16 16
Mixed Binary 0 0
General Linear 65 65
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.662758
Constraint % 0.598802 0.705256 0.598802 4.19162
Variable % 1.918370 2.088890 1.918370 7.67347
Score 0.308520

Best Known Solution(s)

No solution available for fhnw-sq3 .

Similar instances in collection

The following instances are most similar to fhnw-sq3 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Status Objective
fhnw-sq2 650 625 25 0 91 1968 Simon Felix fhnw-sq hard 0
neos-5125849-lopori 8130 8040 90 0 453 20938 Jeff Linderoth neos-pseudoapplication-42 easy 0
fiball 34219 33960 258 1 3707 104792 MIPLIB submission pool easy 138
neos-3004026-krka 17030 16900 130 0 12545 41860 Jeff Linderoth neos-pseudoapplication-38 easy 0
neos-1354092 13702 13282 420 0 3135 187187 NEOS Server Submission neos-pseudoapplication-47 easy 46

Reference

No bibliographic information available

Last Update Nov 19, 2018 by Gregor Hendel
generated with R Markdown
© 2018 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint