p2m2p1m1p0n100

infeasible binary benchmark_suitable knapsack mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
B. Krishnamoorthy, G. Pataki 100 1 1 easy Infeasible p2m2p1m1p0n100.mps.gz

A 0-1 knapsack problem constructed to be difficult

Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 100 100
Constraints 1 1
Binaries 100 100
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 1 1
Nonzeroes 100 100
Constraint Classification Properties
Original Presolved
Total 2 2
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 1 1
Integer Knapsack 0 0
Mixed Binary 1 1
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.30103
Constraint % 100 100 100 100
Variable % 100 100 100 100
Score 0.00000

Best Known Solution(s)

No solution available for p2m2p1m1p0n100 .

Similar instances in collection

The following instances are most similar to p2m2p1m1p0n100 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
mod008inf easy 319 319 0 0 7 1562 MIPLIB submission pool mod Infeasible infeasible binary knapsack mixed_binary
d20200 open 4000 4000 0 0 1502 189389 COR@L test set 12252* binary decomposition set_partitioning invariant_knapsack knapsack
pb-market-split8-70-4 open 71 71 0 0 17 1113 Gleb Belov pb- no_solution binary feasibility knapsack mixed_binary
10teams easy 2025 1800 0 225 230 12150 MIPLIB submission pool 924 binary set_partitioning set_packing invariant_knapsack
h80x6320 easy 12640 6320 0 6320 79 6320 MIPLIB submission pool fixed-cost-network-flow 3700 binary decomposition set_partitioning

Reference

No bibliographic information available

Last Update Apr 09, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint