academictimetablesmall

benchmark binary decomposition benchmark_suitable aggregations precedence variable_bound set_partitioning set_packing cardinality invariant_knapsack equation_knapsack binpacking knapsack

Submitter Variables Constraints Density Status Group Objective MPS File
Joshua Friedman 28926 23294 3.98262e-04 easy 0 academictimetablesmall.mps.gz

Academic timetabling integer program

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 28926 25964
Constraints 23294 18016
Binaries 28926 25964
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.000398262 0.000530255
Nonzeroes 268350 248036
Constraint Classification Properties
Original Presolved
Total 23294 18016
Empty 2940 0
Free 0 0
Singleton 27 0
Aggregations 87 17
Precedence 142 131
Variable Bound 4481 3771
Set Partitioning 87 741
Set Packing 1455 2500
Set Covering 3630 0
Cardinality 880 56
Invariant Knapsack 826 9754
Equation Knapsack 298 286
Bin Packing 420 570
Knapsack 356 190
Integer Knapsack 0 0
Mixed Binary 7665 0
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.863323
Constraint % 0.0166519 1.13341 0.133215 5.91141
Variable % 0.0306960 1.25363 0.207198 4.15548
Score 0.792248

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 0 0 0 0 0 - 2018-10-10 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to academictimetablesmall in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
academictimetablebig hard 168974 168974 0 0 167661 1545380 Joshua Friedman 427 binary aggregations precedence variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack binpacking knapsack
nursesched-medium-hint03 hard 34248 34170 78 0 14062 622800 Haroldo Gambini Santos nursescheduling 115 benchmark decomposition benchmark_suitable set_partitioning set_packing cardinality invariant_knapsack general_linear
nursesched-sprint-late03 easy 11690 11670 20 0 5032 208410 Haroldo Gambini Santos nursescheduling 48 decomposition benchmark_suitable set_partitioning set_packing cardinality invariant_knapsack general_linear
nursesched-sprint-hidden09 easy 11650 11630 20 0 4872 208050 Haroldo Gambini Santos nursescheduling 338 benchmark_suitable set_partitioning set_packing cardinality invariant_knapsack general_linear
neos-960392 easy 59376 59376 0 0 4744 189503 NEOS Server Submission neos-pseudoapplication-94 -238 benchmark binary benchmark_suitable precedence variable_bound set_partitioning set_packing invariant_knapsack binpacking knapsack

Reference

@article{Friedman16,
  title={Automated timetabling for small colleges and high schools using huge integer programs},
  author={Friedman, Joshua S},
  journal={arXiv preprint arXiv:1612.08777},
  year={2016}
}

Last Update Jun 24, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint