Submitter Variables Constraints Density Status Group Objective MPS File
Gleb Belov 48950 98021 6.10394e-05 hard cryptanalysis Infeasible cryptanalysiskb128n5obj14.mps.gz

Linearized Constraint Programming models of the MiniZinc Challenges 2012-2016. I should be able to produce versions with indicator constraints supported by Gurobi and CPLEX, however don’t know if you can use them and if there is a standard format. These MPS were produced by Gurobi 7.0.2 using the MiniZinc develop branch on eb536656062ca13325a96b5d0881742c7d0e3c38

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 48950 44076
Constraints 98021 84009
Binaries 47830 42956
Integers 1120 1120
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 1328 0
Nonzero Density 6.10394e-05 6.85450e-05
Nonzeroes 292875 253807
Constraint Classification Properties
Original Presolved
Total 98022 84010
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 4668 7278
Precedence 20258 11950
Variable Bound 11124 11878
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 2422
Cardinality 6116 3482
Invariant Knapsack 12770 9856
Equation Knapsack 0 0
Bin Packing 25098 2946
Knapsack 17910 13176
Integer Knapsack 1 1
Mixed Binary 0 20944
General Linear 77 77
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.970812
Constraint % 0.00238 0.0738526 0.00357 26.8162
Variable % 0.00427 0.0912005 0.00641 41.5368
Score 0.545821

Best Known Solution(s)

No solution available for cryptanalysiskb128n5obj14 .

Similar instances in collection

The following instances are most similar to cryptanalysiskb128n5obj14 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Status Objective
cryptanalysiskb128n5obj16 48950 47830 1120 0 98021 292875 Gleb Belov cryptanalysis easy 0
gfd-schedulen180f7d50m30k18 227535 192408 2025 33102 457985 1233370 Gleb Belov gfd-schedule hard 1
fhnw-binpack4-58 7550 7400 0 150 9900 35750 Simon Felix binpack open
neos-3603137-hoteo 4003 3913 90 0 10510 39146 Jeff Linderoth neos-pseudoapplication-38 open
supportcase4 3162 3162 0 0 9492 38036 Michael Winkler easy 0

Reference

@Inbook{Belov2016,
author="Belov, Gleb
and Stuckey, Peter J.
and Tack, Guido
and Wallace, Mark",
editor="Rueher, Michel",
title="Improved Linearization of Constraint Programming Models",
bookTitle="Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings",
year="2016",
publisher="Springer International Publishing",
pages="49--65",
isbn="978-3-319-44953-1",
doi="10.1007/978-3-319-44953-1_4",
url="http://dx.doi.org/10.1007/978-3-319-44953-1_4"
}

Last Update Nov 19, 2018 by Gregor Hendel
generated with R Markdown
© 2018 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint