kosova1

no_solution aggregations precedence variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack binpacking general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
George Fonseca 614253 304931 1.8231e-05 open timetabling NA kosova1.mps.gz

Educational timetabling problems from several real schools/universities around the world. These instances were originally expressed in the xhstt file format [1] and formulated as Integer Programming models as described at [2].

[1] http://www.sciencedirect.com/science/article/pii/S0377221717302242 [2] https://link.springer.com/article/10.1007/s10479-011-1012-2

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 614253 333136
Constraints 304931 176993
Binaries 609591 328474
Integers 4662 4662
Continuous 0 0
Implicit Integers 0 4531
Fixed Variables 0 0
Nonzero Density 1.82310e-05 2.78912e-05
Nonzeroes 3414760 1644540
Constraint Classification Properties
Original Presolved
Total 304931 176993
Empty 875 0
Free 0 0
Singleton 1053 0
Aggregations 2460 2761
Precedence 30504 18321
Variable Bound 26404 18598
Set Partitioning 21052 18774
Set Packing 8301 8301
Set Covering 2767 1491
Cardinality 11141 6735
Invariant Knapsack 13359 10019
Equation Knapsack 173040 82988
Bin Packing 0 41
Knapsack 126 0
Integer Knapsack 0 0
Mixed Binary 0 0
General Linear 13849 8964
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components
Constraint %
Variable %
Score

Best Known Solution(s)

No solution available for kosova1 .

Similar instances in collection

The following instances are most similar to kosova1 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
woodlands09 hard 382147 382119 28 0 194599 2646000 George Fonseca timetabling 0 aggregations variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack general_linear
highschool1-aigio hard 320404 319686 718 0 92568 1562170 George Fonseca timetabling 0 benchmark benchmark_suitable aggregations variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack general_linear
brazil3 easy 23968 23874 94 0 14646 133184 George Fonseca timetabling 24 benchmark decomposition benchmark_suitable aggregations precedence variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack mixed_binary general_linear
kottenpark09 open 2893026 2892333 693 0 325547 13085500 George Fonseca timetabling 2120* aggregations precedence variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack mixed_binary general_linear
triptim7 open 27342 18619 8716 7 14427 521944 MIPLIB submission pool triptim 2566.02* aggregations variable_bound set_partitioning set_packing set_covering invariant_knapsack mixed_binary general_linear

Reference

@article{FONSECA201728,
title = "Integer programming techniques for educational timetabling",
journal = "European Journal of Operational Research",
volume = "262",
number = "1",
pages = "28 - 39",
year = "2017",
note = "",
issn = "0377-2217",
doi = "http://dx.doi.org/10.1016/j.ejor.2017.03.020",
url = "http://www.sciencedirect.com/science/article/pii/S0377221717302242",
author = "George H.G. Fonseca and Haroldo G. Santos and Eduardo G. Carrano and Thomas J.R. Stidsen",
keywords = "Timetabling",
keywords = "Integer Programming",
keywords = "Formulation"
}

Last Update Jul 31, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint